NDNts

    Module @ndn/tlv

    @ndn/tlv

    This package is part of NDNts, Named Data Networking libraries for the modern web.

    This package implements Type-Length-Value structure encoder and decoder as specified in NDN Packet Format v0.3. It has full support for TLV evolvability guidelines.

    import { Encoder, Decoder, EvDecoder, NNI, StructBuilder, StructFieldNNI, StructFieldText } from "@ndn/tlv";

    // other imports for examples
    import { Name, TT as l3TT, StructFieldName } from "@ndn/packet";
    import assert from "node:assert/strict";

    The Encoder prepends encodable items to an internal ArrayBuffer. It reallocates a larger buffer when necessary.

    // Encode TLV object that implements EncodableObj interface:
    let encoder = new Encoder();
    encoder.encode(new Name("/A"));
    // Look at the output:
    assert.deepEqual(encoder.output, Uint8Array.of(0x07, 0x03, 0x08, 0x01, 0x41));

    // Prepend a TLV structure with specified TLV-TYPE and TLV-VALUE:
    encoder = new Encoder();
    encoder.encode([0xB0, Uint8Array.of(0xC0, 0xC1)]);
    assert.deepEqual(encoder.output, Uint8Array.of(0xB0, 0x02, 0xC0, 0xC1));

    // Prepend a non-negative integer
    encoder.encode(NNI(0x200110));
    // We are using the same Encoder instance, so it gets prepended:
    assert.deepEqual(encoder.output, Uint8Array.of(0x00, 0x20, 0x01, 0x10, 0xB0, 0x02, 0xC0, 0xC1));

    // Put multiple encodable items in TLV-VALUE:
    encoder = new Encoder();
    encoder.encode([0xB0, Uint8Array.of(0xC0, 0xC1), new Name("/A")]);
    assert.deepEqual(encoder.output,
    Uint8Array.of(0xB0, 0x07, 0xC0, 0xC1, 0x07, 0x03, 0x08, 0x01, 0x41));

    // `Encoder.encode()` is a shortcut for encoding one item and obtaining the output:
    const wireB = Encoder.encode(new Name("/B"));
    assert.deepEqual(wireB, Uint8Array.of(0x07, 0x03, 0x08, 0x01, 0x42));

    The Decoder is a basic sequential decoder.

    // Read Type-Length-Value manually:
    let decoder = new Decoder(Uint8Array.of(0x08, 0x01, 0x41, 0xFF));
    const { type, length, value } = decoder.read();
    assert.equal(type, 0x08);
    assert.equal(length, 1);
    assert.deepEqual(value, Uint8Array.of(0x41));
    // The remaining [0xFF] is still in the buffer.
    assert.equal(decoder.eof, false);
    // If you continue reading, you get an error due to incomplete TLV.
    assert.throws(() => decoder.read());

    // Decode into TLV object:
    decoder = new Decoder(Uint8Array.of(0x07, 0x03, 0x08, 0x01, 0x41));
    const nameA = decoder.decode(Name);
    assert(nameA instanceof Name);
    assert.equal(nameA.toString(), "/8=A");
    // We have fully consumed the buffer.
    assert.equal(decoder.eof, true);

    // `Decoder.decode()` is a shortcut for decoding one item and checking for EOF.
    const nameB = Decoder.decode(wireB, Name);
    assert(nameB instanceof Name);
    assert.equal(nameB.toString(), "/8=B");
    // It throws if there's junk after the TLV.
    assert.throws(() => Decoder.decode(Uint8Array.of(...wireB, 0xFF), Name));

    The EvDecoder is a decoder that is aware of TLV evolvability guidelines. It's used to implement decoding functions of TLV objects, such as Interest.decodeFrom.

    Suppose we want to decode Adjacency type in NLSR's LSDB Dataset:

    Adjacency = ADJACENCY-TYPE TLV-LENGTH
                  Name
                  Uri
                  Cost
    Uri = URI-TYPE TLV-LENGTH *VCHAR
    Cost = COST-TYPE TLV-LENGTH nonNegativeInteger
    
    ADJACENCY-TYPE = 0x84
    URI-TYPE = 0x8D
    COST-TYPE = 0x8C
    
    // Declare a class to represent this type.
    class Adjacency {
    public name = new Name();
    public uri = "";
    public cost = 0;
    }

    // Declare constants for TLV-TYPE numbers.
    const TT = {
    ...l3TT,
    Adjacency: 0x84,
    Cost: 0x8C,
    Uri: 0x8D,
    } as const;

    // Create the decoder.
    const EVD = new EvDecoder<Adjacency>("Adjacency", TT.Adjacency)
    .add(TT.Name, (t, { decoder }) => t.name = decoder.decode(Name), { required: true })
    .add(TT.Uri, (t, { text }) => t.uri = text, { required: true })
    .add(TT.Cost, (t, { nni }) => t.cost = nni, { required: true });
    // Each rule declares a possible sub TLV.
    // They are added in the order of expected appearance.
    // The callback receives two arguments:
    // (1) the target object we are decoding into, so that EVD instances are reusable;
    // (2) a Decoder.Tlv structure, where we can selectively access just the TLV-VALUE, the whole TLV,
    // the TLV-VALUE as a Decoder, the whole TLV as a Decoder, etc.

    // Suppose we receive this encoded TLV:
    const adjacencyWire = Uint8Array.of(
    0x84, 0x0D,
    0x07, 0x03, 0x08, 0x01, 0x41, // Name
    0x8D, 0x01, 0x42, // Uri
    0xF0, 0x00, // unrecognized non-critical TLV-TYPE, ignored
    0x8C, 0x01, 0x80, // Cost
    );

    // We can decode it with the EVD.
    const adjacency = EVD.decode(new Adjacency(), new Decoder(adjacencyWire));
    assert.equal(adjacency.name.toString(), "/8=A");
    assert.equal(adjacency.uri, "B");
    assert.equal(adjacency.cost, 128);

    The StructBuilder is a helper for defining a class that represents a TLV structure. It allows you to define the typing, constructor, encoder, and decoder, while writing each field only once.

    // Create a StructBuilder and add the fields.
    const buildAdj = new StructBuilder("Adjacency", TT.Adjacency)
    .add(TT.Name, "name", StructFieldName, { required: true })
    .add(TT.Uri, "uri", StructFieldText, { required: true })
    .add(TT.Cost, "cost", StructFieldNNI, { required: true });
    // You should call .add() on each successive return value, and save the last return value into the
    // builder variable. This gradually builds up the typing of the TLV class.
    // WRONG EXAMPLE:
    // const builder = new StructBuilder();
    // builder.add(...);
    // builder.add(...);
    // In the wrong example, typing information is not saved into the builder variable.

    // Declare a class to represent the Adjacency type, inheriting from a base class supplied by the builder.
    class Adj extends buildAdj.baseClass<Adj>() {}

    // Assign the subclass to the builder (otherwise the decoding function will not work).
    buildAdj.subclass = Adj;

    // We can construct an instance and encode it.
    const adj0 = new Adj();
    adj0.name = new Name("/A");
    adj0.uri = "B";
    adj0.cost = 128;
    const adj0Wire = Encoder.encode(adj0);
    assert.deepEqual(adj0Wire, Uint8Array.of(
    0x84, 0x0B,
    0x07, 0x03, 0x08, 0x01, 0x41, // Name
    0x8D, 0x01, 0x42, // Uri
    0x8C, 0x01, 0x80, // Cost
    ));

    // We can decode the wire encoding.
    const adj1 = Decoder.decode(adjacencyWire, Adj);
    assert.equal(adj1.name.toString(), "/8=A");
    assert.equal(adj1.uri, "B");
    assert.equal(adj1.cost, 128);

    StructBuilder enables rapid development of TLV based structures, but is less flexible than writing code with Encoder, Decoder, and EvDecoder. Some limitations are:

    • You cannot write JSDoc for individual fields.
    • You cannot decode multiple TLV-TYPE numbers into the same field (counterexample: Name with typed name components).
    • You cannot encode the structure with different TLV-TYPE numbers (counterexample: SigInfo encoded as either ISigInfo or DSigInfo).

    Namespaces

    Decoder
    Encoder
    EvDecoder
    Extensible
    Extension
    NNI
    StructFieldType

    Classes

    Decoder
    Encoder
    EvDecoder
    ExtensionRegistry
    StructBuilder

    Interfaces

    Decodable
    EncodableObj
    Extensible
    ExtensionOptions
    StructFieldType

    Type Aliases

    Encodable
    EncodableTlv
    StructFields

    Variables

    StructFieldBool
    StructFieldBytes
    StructFieldNNI
    StructFieldNNIBig
    StructFieldText

    Functions

    NNI
    printTT
    StructFieldEnum
    MMNEPVFCICPMFPCPTTAAATR